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We consider a plane, steady, homogeneous flow of circular disks. The disks are 
identical, smooth, and inelastic. We adopt the assumption of molecular chaos and 
introduce an anisotropic Maxwellian velocity distribution function based on the full 
second moment of the velocity fluctuations. In  the limits of dilute and dense flows, 
we determine approximate analytic solutions of the balance law for the second 
moment that result in stresses whose qualitative behaviour and magnitudes are in 
good agreement with numerical simulations. 

1. Introduction 
Existing theories for rapidly flowing granular materials, as reviewed, for example, 

by Richman (1986) and Jenkins (1987), all exploit the similarities between the 
colliding grains in such a flow and the agitated molecules of a dense, disequilibrated 
gas, while incorporating the important difference that collisions between the grains 
inevitably dissipate energy. When the particles are smooth and round and the 
amount of energy dissipated in a collision is small, standard arguments of the kinetic 
theory, slightly modified, may be employed to derive balance laws for the means of 
the mass density, velocity, and energy of the velocity fluctuations ; to determine the 
velocity distribution function; and to calculate the stress, the flux of fluctuation 
energy, and its collisional rate of dissipation. This has been done for spheres by Lun 
et al. (1984) and Jenkins & Richman (1985~)  and for plane flows of circular disks by 
Jenkins & Richman (1985b). To the order of the approximation used in determining 
the velocity distribution function, the stress and the energy flux are identical to those 
for elastic particles. However, the presence of the rate of dissipation in the energy 
balance permits it to have steady solutions in situations where none are possible in 
the classical theory. 

When collisions between smooth spheres or disks involve more significant 
dissipation, numerical simulations of the detailed particle dynamics in a steady, 
homogeneous shear flow (Walton & Braun 1986, 1987) indicate that the appropriate 
theory has a more complicated structure. The simulations show that, a t  least in 
relatively dilute systems, the deviatoric part of the second moment of the velocity 
fluctuations is of the same order as its isotropic part, contrary to an assumption made 
in deriving the more elementary theory. In order to account for this, the theory may 
be extended by treating the full second moment as a field variable and adding the 
balance law for its deviatoric part to those for the density, velocity, and its isotropic 
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part. The velocity distribution function is, then, expected to depend upon the full 
second moment in a significant way. 

Such extensions of the theory for dilute and dense systems of spheres have already 
been made by, respectively, Goldreich & Tremaine (1978) and Araki & Tremaine 
(1986). For smooth spheres, they employ the assumption of molecular chaos, or 
Enskog’s extension of i t  to dense systems, to relate the probable frequency of 
collisions to the velocity distribution function. They then suppose that the velocity 
distribution function is an anisotropic Maxwellian based on the full second moment 
of the velocity fluctuations. For both dilute and dense systems they obtain local 
numerical solutions of the balance of second moment for the steady plane, 
inhomogeneous, shear flow in a planetary ring. 

Here we consider steady, plane, homogeneous, shear flows of identical, smooth, 
inelastic, circular disks. Then, proceeding in a fashion similar to Goldreich & 
Tremaine (1978) and Araki & Tremaine (1986), we adopt the appropriate form of the 
anisotropic Maxwellian and use it to calculate the relevant means and mean rates. In 
the dilute and dense limits, we obtain approximate analytic solutions of the balance 
of second moment that provide the dependence of the second moment on the shear 
rate, area fraction, and coefficient of restitution. The approximate analytical 
solutions differ only slightly from the corresponding numerical solutions. With the 
solutions for the second moment, the components of the stress may be computed 
numerically or approximated analytically. The stress components exhibit the same 
qualitative behaviour in the two limits as observed in the numerical simulations and, 
in the two cases that quantitative comparisons can be made, the differences are 
within the error of the simulation in the dilute limit and on the order of 10% in the 
dense limit. 

2. General considerations 
We restrict our attention here to plane flows of a granular material consisting of 

identical, smooth, inelastic circular disks of mass m and diameter v. We operate 
within the context of kinetic theories for macroscopic dissipative particles that  have 
been developed in the past five years. Such theories involve balance laws for mean 
values of particle properties and constitutive relations that prescribe how these mean 
values are changed in collisions and by the motion of particles between collisions. A 
typical property $ depends upon the particle through the velocity c of its centre, and 
its mean value ($) is calculated using the single particle velocity distribution 
f ( ’ ) ( c , r , t ) .  This function of the particle’s velocity, position r ,  and the time t ,  is 
defined so that the number n of particles per unit area at r and t is given by 

n(r ,  t )  = f(l)(c, r ,  t )  dc, ( 1 )  s 
($) = ; J $(c)f‘l’(c) dc, 

where the integration is over the entire plane in velocity space. The mean of $ is 
then 

( 2 )  

where the dependence upon r and t is understood and the integration is as before. 
Of particular importance are the mean mass density p = ‘mn and the mean velocity 
u = (c). The fluctuation velocity C is the velocity of a particle relative to the 
mean, C = c - u ;  through u,  i t  is a function of r and t .  The kinetic energy of the 
velocity fluctuations is proportional to the granular temperature T = $(C. C). 
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When $ = $(c), the rate of change of its mean value in a fixed area element is due 
to the acceleration of a disk by an external force F, the net influx of disks bearing $, 
and changes in $ in collisions: 

( 2:) a 
-(n$) = n-*- -V.(nc$)+C[$] .  
at (3) 

Here @[$I is the collisional rate of production of $ in a unit area of the plane. It 
depends upon the change in the property of a particle in a typical binary collision and 
the probable frequency of such collisions. 

In a collision between a pair of smooth circular disks, the velocities c; and c; of the 
disks after a collision are related to their velocities c, and c2 before the collision by the 
unit vector k ,  directed a t  impact from the centre of the first disk to the centre of the 
second, and the coefficient of restitution e :  

2(c2-cc,) =2(C''-C,) = ( - l ) A ( l + e ) ( k - g ) k ,  (4) 

where A = 1 , 2  and g = c, - c,. The total change A$ of $ in a collision is defined as 
A$ = $; + $; - $, - $,, where, for example, $; = $(ci). Then, by (4), A c  = 0 ; but, 
in dyadic notation, 

2A(cc) = 2A( CC) = (1  + e )  (k  .g)  [ (1  + e )  ( k - g )  kk -gk - kg] .  (5) 

The likelihood of binary collisions is determined by the complete pair distribution 
function f (,) defined so that, a t  time t ,  f (,)(c,, r,, c,, r,, t )  dc, dr, dc, dr, is the probable 
number of pairs of disks with the centre of the first in dr, a t  r, with velocity in 
dc, about c, and the centre of the second in dr, a t  r2 with velocity in dc, about c,. 
Then the probable number of collisions per unit time experienced by a disk in dr a t  
r with velocity in dc, a t  c, over the element of angle dk a t  k from disks with velocities 
within dc, a t  c1 is j'(,)(c,, r -  ak,  c,, r )  a ( k . g )  dkdc, dc, dr when keg > 0. Con- 
sequently, the collisional production of $ per unit area a t  r is 

where the integration is to be taken over all values of c,, c,, and k for which a collision 
is impending, k - g  > 0. Alternatively, if the first disk is assumed to be located at r and 
all possible collisions between it and a second are considered, then 

integrated over all impending collisions. A more symmetric and suggestive form for 
the collisional production is obtained by making use of the Taylor series 

* ( -ak.V)" 
f ( r - a k ,  r )  = f ( r ,  r +  ak )  - (ak .V)  X f(r ,  r+  ak ) ,  

m-0 ( m + l ) !  

in (7) and taking half of the sum of this and its alternative (6). The result may be 
written in the form 

(9) @ [ $ I  = "$1 - v .  @[$I1 

where "$1 = 1 2 ///A$f (,)(c,, r -ak ,  c,, r )  c ( k . g )  dkdc, dc,, (10) 

I 1  FLM 192 
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taken over all k . g  >/ 0, is the collisional source of $, and 
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over all k . g  3 0, is the collisional flux of $. For our purposes it is convenient to have 
a more compact expression for the collisional flux. To obtain this we integrate the 
Taylor series 

over 7 from zero to one and make the correspondence with the integrand of (11) .  
Thus, 

@[$I = -+ 111 ($; - $,) k s'f@)(~,, r -yvk ,  c,, r +  a k - ~ p k )  dy a ( k . g )  dkdc, dc,. 
0 

(13) 

With the decomposition (9), the balance law (3) may be written in the form 

For example, when $ = 1 the balance of mass results: 

p+pv.u = 0, 

where the overdot denotes a time derivative calculated with respect to the mean 
velocity. With $ = c in (14) and the use of (15) the familiar form of the balance of 
linear momentum is obtained : 

pu = -V-P+nF,  (16) 

where P = p(CC)+m@[C] ,  (17) 

is the pressure tensor. 
When the particle property is a function of the fluctuation velocity C,  the balance 

law corresponding to (14) has a slightly more complicated structure. In  this case, 
because l/r depends on r through u,  there is an additional term in the decomposition 
(9). This is best expressed in terms of Cartesian components: 

fi  ac, I @[$I = "$]--@,[$I--@ - , 
a 

3f-a 

where Greek indices take the values 1 and 2. Then, for $ = $(C) ,  

where the time derivative of C is calculated following a particle: 

( c - V )  u. 
d C  F au 
dt m at 
_ -  - --_- 
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With this and (15), the balance law (19) may be written as 

317 

So, for example, if $ = CC and K = (CC), 

where a comma denotes a partial derivative, 

&yap P(CyCaC,) +mOy[CaCpl, (23) 

and Nu, = mN[C,C,]. (24) 

Equation (22) is the balance law for the second moment K off(l). 
In  order to relate the complete pair distribution function at collision to the 

velocity distribution function, we adopt the assumption of molecular chaos and 
ignore the possible correlations in the velocities of colliding disks and account for the 
correlations in their position in the simple way proposed by Enskog for dense gases. 
Then f ( z )  for a colliding pair may be written as the product of the f ( l )  of each disk, 
evaluated at its centre, and the equilibrium radial distribution function go evaluated 
a t  the point of contact : 

f ( 2 ) ( ~ , , r - g k , ~ z , r )  = gof( l ) (c1,r-crk)f( l ) (c , ,r) .  (25)  

Verlet & Levesque (1982) have determined an analytic expression for the dependence 
of go upon the area fraction v = $ma2 that is in excellent agreement with the 
numerical simulations of Hoover & Alder (1967) up to a value of v = 0.665 a t  which 
a change of phase to a solid is observed. It is 

In  order to  carry out an analysis of an unsteady, inhomogeneous flow we would 
write down an additional balance law for the contracted third moment (C,C,C,) 
and assume that all other components of the third moment were zero and that all 
higher moments vanished. We would next introduce an explicit form for the single- 
particle velocity distribution function that depended upon r and t through the mean 
fields n, u, K ,  and the contracted third moment. With the assumption of molecular 
chaos (25), the collisional fluxes and sources could then be calculated as functions of 
the mean field and their spatial derivatives. Finally, the balance laws, used with 
appropriate initial and boundary conditions, would determine the r and t dependence 
of the mean fields. 

Here we do this for the simplest case of a steady, homogeneous, shear flow. We 
anticipate that more complicated unsteady, inhomogeneous flows may be treated as 
perturbations of this elementary but important uniform steady state. 

11-2 
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3. Steady, homogeneous, shearing 
In this simple flow n, Vu, and K are constant and the contracted third moment 

vanishes. In  it, we shall assume that the velocity distribution is an anisotropic 
Maxwellian. 

n 
2nA5 

f (l)(c, r ,  t )  = exp ( -$C. K-’ - C), (27 ) 

where A is the determinant of K. The dependence off upon r enters through that 
of u. The appropriate simplification of the balance law (22) for the second moment 
will be used to determine K in terms of n and Vu. 

We take the x- and y-axes in the plane of shear and, respectively, parallel and 
perpendicular to the streamlines. The non-vanishing x-component u of the velocity 
is then 

u = 2hy,  

where h is a constant. The stretching D and the spin W are, respectively, the 
symmetric and antisymmetric parts of the velocity gradients : 

The eigenvector of D corresponding to the eigenvalue h is obtained by rotating the 
unit vector in the x-direction counterclockwise through an angle of an. The 
eigenvector of K corresponding to the eigenvalue K, is assumed to be related to this 
vector by a counterclockwise rotation through an angle q5. Then the second 
eigenvector of K makes an angle of $+in with the y-axis and is associated with the 
eigenvalue K,. We introduce the parameters 

2T = K, = K,+K,, 01 + (K,-K,)/2T7 (30) 

and R = uh/4Ti. (31) 

The second moment K is determined when T, a, and q5 are known. Its components 
are 

1+asin2q5 -a cos2q5 
-a cos2q5 l--a sin24 

K,, = T 

The parameter R measures the strength of the mean shear relative to the vigour of 
the velocity fluctuations. We note that the diagonal components of K are, in general, 
not equal. 

3.1. The collisional source of second moment 

We introduce the vector V = c ( k . V )  u and expand the velocity distribution function 
f (I)(c7 r -  uk) in a Taylor series about r :  

n 
f ‘ ” ( c , r - a k )  = ~ e x p [ - ~ ( c , + v , ) ( C , + ~ , ’ p ) ~ ~ j ] ,  2nd3 (33) 

where all of the mean fields are evaluated a t  r .  For simple shear, this expression is 
exact. Using it, the complete pair distribution function may be expressed in terms of 
g, V and Q 5 $(C, + C,) : 

f ( 2 ) ( ~ , , r - ~ k , c 2 , r )  = - n 2 g ~  exp{-iKzj[(ga+ va) (g,+ v,)+ P Q ~ +  va) ( ~ Q P +  v,)I>. (34) 
4n2A 
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Then, upon changing variables from c, and c, to Q and g in (10) and noting that 
dc, dc, = dg dQ, we have an explicit expression for the collisional source K of a 
property $, I n  the event that A$ is independent of Q,  the integration over Q may 
be carried out immediately. The result is 

integrated over all k.g > 0. For example, A(C,C,) given by ( 5 )  has this property. 
In  order to facilitate the calculation of Nap, it  is convenient to write the total 

change of C,C, in terms of the unit vector j, = eaBk,, where eI2 = -e21 = I and 
Ell = EZ2 = 0: 

A(cac,) = - t ( l  +e l  (k.g) [ ( ' - e l  (k.g) kak,+ (j.g) (jak~+j,ka)l. 

N a p  = A a p  + ' u p ,  

(36) 

Note that the second term has a zero trace. Consequently we write 

(37) 

where A ,  and 8, are the integrals corresponding to the first and second terms of (36) 
and the hat denotes the deviatoric part of B,, or a quantity with zero trace. 

The integrations over g in A,, and 8, are easily carried out. The results are most 
compactly expressed in terms of two functions of x = V .  k/27:, where T = lea K,, k, = 

(38) 

T + ka R a p  ~cg, 

9 = -n t ( i+x2)  x erfc (x) + ( 1  +x2) exp ( -x2)), 
and Y = &(++x2) erfc(X1-X exp(-X2). (39) 

Ic, k ,  $9 dk ; s - 4pvg0( 1 - e 2 )  

Crnf We obtain : 'a, = 

and Ba, = Eap+Pa,, 

with 

and (43) 

It remains to carry out the k integration. 

3.2. The collisional jlux of momentum 

With the assumption of molecular chaos and the adoption of the anisotropic 
Maxwellian, the complete pair distribution function that appears in (13) for the 
collisional flux can be written as a function of g, V,  Q, and 6 = +-7 as 
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The integration over E corresponding to that over 9 is easily carried out: 
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x exp [ - ih';;p'(ga + Val (gp + q?)l, (45) 

where u V, K,$ Vp, b - V, K$ Qp,  146) 

and, for example, V 2  = V .  V .  
is independent of Q,  it is best to make the 

change of variables to g and Q and carry out the Q integration before the [ 
integration. In  this case the Q integration yields an expression that is independent 
of 5, so the 6 integration poses no problem. For such a property, the result of these 
integrations is 

However, in situations in which $; - 

@A$) = --*Jj($;-$Jk, 8nAn exp[-iK$b,+ V,)(gp+Vp)I(k.g)dkdg, (47) 

integrated over all k - g  2 0. An expression identical to this would have been obtained 
if only the first term of the series in (1 1 )  had been retained. 

The collisional flux that enters into the second moment equation in simple shear 
is that of linear momentum. Here $; - $1 is given by (4) and is independent of Q. So, 
upon using (4) in (47), multiplying by the mass m, and integrating over g, we 
obtain 

It remains to carry out the k integration. 

3.3.  The balance of second moment 

In  simple shear, the balance law (22) for K reduces to 

0 = -Pp,u a,p-pp,u,,p+ K,, (49) 

where pap = PK,, + @, = pp,, (50)  

with K,, and O,, given by (37)-(43) and (48) respectively. 
At this point it is useful to carry the decomposition (37)-(43) of the collisional 

source one step further in order to highlight how the symmetric and antisymmetric 
parts of the velocity gradient enter into (49). We note that A ,  and EaB depend on 
the velocity gradients only through V - k  = a [ ( k . V ) u ] . k  = gk-D.k. Consequently, 
they are functions of D not W. However, pa, depends on W through V-K-le j .  We 
make this dependence explicit by using the identity 

Ah'$ = Kyy Sap - K,B 

(j,kpl+kajg) ( v*K- '* . i )d  = M % k y  W,y+kpkyWay)+~.(jak,+jplkIc,) ~pjy(TDy,L--D,,K8y). 

(51) 

to write 

( 5 2 )  
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If we use this in the definition (43) of pa, and employ the definition (48) of O,, we 
have 

(53) pap = 0, w,, + 0, way + d,,, 

Note that 8, depends upon D but not upon W. With this, the balance of second 
moment may be written as 

p K p b ( D u p  + WaJ + D a p  + pKpa(DPp + w , p )  + 0, ~p~ = + gap + G a p  (55) 

We solve equation (55) in the two extremes of a dilute system and a dense system. 
Solutions for values of the area fraction near these two extremes may be obtained as 
perturbations of these two limits. 

3.4. The dilute limit 
Here we suppose that R = crh/4Ti and G = vg, are small but that RIG, a,  and $ are 
of order one. Then, a t  lowest order in (55), 

0, = 0;  (56) 

A 

and Gap = 0. (59) 

The error we make in (55) by adopting (56) to (59) is of the order of R and G.  
The integrations over k in (57) and (58) are effected by introducing the angle 8 

between k and the first eigenvector of K ;  then 7 = T(l -a cos 28) and dk = d0. We 
obtain 

and 

where I(a) = sin2 28( 1 -a cos 28); d8, s: 
and (1 - a COB 28);dB. (63) 

Using the lowest-order dilute expressions for the pressure tensor and the collisional 
source of second moment, we may write the trace of the balance of second moment 
(55)  as 

4xb(R/G) cos 24 = (1 - e2) y(a) ,  

where q5 is the counterclockwise angle through which the eigenvectors of D must be 
rotated to give the eigenvectors of K.  Equation (64) is the lowest order balance of 
fluctuation energy for the simple shear of a dilute system. 

We next consider the deviatoric part of the lowest-order dilute balance of second 

(64) 
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0.8 

FIGURE 1 .  The variation of u, R/C,  and $, normalized by their behaviour for small E ,  with E; in 
the dilute limit. 

moment and write its components with respect to the orthonormal basis composed 
of the eigenvectors of K. The diagonal components of the resulting equation require 
that 

2d(R/G)  cos 24 = (1 + e )  [ 1 + z( 1 - e)] aI(a), 

while the off-diagonal components impose the condition that 

(65) 

sin2q5--a = 0. (66) 

Equations (64), (65), and (66) determine RIG, 4, and a as functions of e = (1-e). 
Equivalently, these equations determine T ,  a, and 4 (and hence K )  in terms of A ,  G, 
and E .  In these, (RIG) cos24 may be eliminated between equations (64) and (65) 
yielding a single equation for the determination of a: 

ey(O1) = 2(1 + g € )  O121(a).  (67) 

This equation may be solved numerically to obtain 01 as a function of E .  The graph 
of such a solution is shown in figure 1. Also shown are the graphs of 4 and RIG, 
determined through (66) and (65), that correspond to this solution. 

An alternative to the numerical solution is an approximate series solution. This is 
facilitated by the expansions of the integrals I ( a )  and y(a)  : 

and 

U 
I(O1) = 7rr($) c 

n=O Pnn! (n+ l)!T($-2n) ' 

(69) 

The crudest approximate solution of (67) turns out to be remarkably good. When 
powers of a higher than the third are ignored in (67), its solution is 

a2 = 16e/(16+9e). (70) 
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FIQURE 2.  The variation of the components of the Ton-dimensional stress, normalized by their 
behaviour at small B ,  with €3 in the dilute limit. 

Then Q, is given by (66) and, through (65), 

( 2 - ~ ) ( 4 + 3 e )  ( a2 
RIG = 

8x4 1 -a2 

These differ from the exact solution by, a t  most, several per cent. 

is, at lowest order, 
With (50), ( 3 2 ) ,  and (66), the pressure tensor for the simple shear of a dilute system 

We use pT = mvh2/4xR2 and introduce a non-dimensional pressure tensor 

G (4xG2/vmh2) P = ( G / R ) 2  d. (73 )  

Then, in figure 2,  we plot the non-dimensional shear stress and normal stresses versus 
E using the numerical determinations of a and RIG. The approximate values, 
determined by employing (70 )  and (71 )  in (73 ) ,  are within several per cent of 
these. 

3.5.  The dense limit 
Here we suppose that G-l is small but that R and a are of order one. In  this case a t  
lowest order the collisional terms dominate the balance of second moment, 

and O,, and K,, are given by their complete expressions (48 )  and (37)-(43) .  

do this we consider the balance of second moment at  lowest order: 
First we wish to show that, in this limit, D and K have the same eigenvectors. To 

This is a tensoral relation between two second-rank tensors, D and K.  Consequently, 
when one is diagonal, so is the other. The importance of this result is that at  lowest 
order in the dense limit, Q, is zero, and only a and R remain to be determined. 
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A -  

In  the Appendix we show that, a t  lowest order, A,,, Eap, G,,, and @,, may be 
expressed in terms of six functions, y ,  H ,  I ,  J ,  N ,  and X. The expressions are: 

and (79) 

With these representations, the isotropic part of the balance of second moment is, 
a t  lowest order, 

4R2S(a, R )  = (1 - e )  y(a,  R ) .  (80) 

The corresponding deviatoric part is 

2N(a,R) = -g( l -e )H(a ,R)+I(a ,R)+W(a,R) .  (81) 

Using standard techniques for numerical integration and the determination of roots, 
these equations may be solved numerically for a and R as functions of 6 .  The graphs 
of such solutions are shown in figure 3. 

Again an alternative to the numerical solution is an approximate series solution. 
Using the approximations to the functions of a and R that  are derived in the 
Appendix, the energy equation (80) may be written, up to an error involving powers 
of R greater than the fifth, as 

8R2[4+xa+ R2(4-$xa2)] = ~ [ 4 +  3R2(8+4xa+a2) + 3R4(4-3xa2 +" 16* a 1 1 3  (") 

where a = a/2xtR. In  the same way, the deviatoric second-moment equation (81) is, 
up to an error involving powers of R greater than the third, 

4[1 +4R2(1+a)] = 3e[l +a+R2(2+3a-Q7ca3)] 

+ ~ [ 4  + R2( 12 - $a2)] + 2[  1 + 2R2( 1 - a)] .  (83) 

We write a = a, + a2 R2 and determine what values of a, and a2 satisfy (83) identically 
up to terms involving powers of R greater than the third. These are 

a, = (2 - 3 4 1  (4 + 3e), (84) 

and 
(8-96) 6 ( 2 - ~ )  

a2 = +ca; + ~ a,+- 
(4 + 36) (4 + 3 4  . 

Then, with an error of the same order as that already made in writing down (82), it 
becomes a quadratic equation for the determination of R 2 :  

R4[2(8- 36) + 2 ~ ( 2  -36) a2 + $ ~ ( 3 ~ - 4 )  U: - ~ ~ ~ ~ , U , - & G ~ C B ~ ]  

+ R2[4(4 - 36) + 2 ~ ( 2  - 36) a,, -$wu~] - 2s = 0. (86) 
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0.5 1 
FIGURE 3. The variation of a and R, normalized by their behaviour a t  small 8, with d in the 

dense limit. 

0.5 1 .o 
1 .o 

0.8 -- 

0.6 -- 

0.4 -- 

0.2 1 
FIGURE 4. The variation of the components of the non-dimensional stress, normalized by their 

behaviour a t  small 6, with d in the dense limit. 

We introduce a non-dimensional pressure tensor 

P E (4x/vGrnh2) 0, (87) 

and, in figure 4, graph its components, based on the numerical determinations of a 
and R, versus c.  Alternative approximate expressions for these may be obtained by 
using the expansions for N and S given in (A 21) and (A 22)  of the Appendix. They 
are 

- -- * (2-cs)[1 +4R2(1 +a,+a2R2)-R4a0(4-$xao)], 
R2 

up to powers of R greater than the third, and 



326 J .  T .  Jenkins and M .  W .  Richman 

up to powers of R greater than the second. In these a,, and a2 are given by (84) and 
(85) and R is determined as a solution of (86). The approximations differ from the 
non-dimensional components based on the numerical solution by, a t  most, several 
per cent. 

4. Discussion 
The figures provide a direct measure of the difference between the results of the 

present theory and those for nearly elastic disks. There is one important qualitative 
similarity in the two theories ; both predict that the components of the stress vary 
with the square of the shear rate. The important qualitative difference is in the 
behaviour of the deviatoric part of the second moment, non-dimensionalized by T .  
For small e in both the dilute and dense limits, its off-diagonal terms are proportional 
to ei; in the dense limit its diagonal terms vanish, in the dilute limit they are 
proportional to 6. Consequently, a t  lowest orde_r, the diagonal terms are zero or 
negligible, the off-diagonal terms are small, and KIT is proportional to D. For more 
dissipative disks, the components of KIT are not small and, in the dilute limit, they 
are not so simply related to those of D. 

In the dilute limit, the principal axes of K are driven away from those of D by the 
spin of the mean motion. This results in a difference in the normal stress on planes 
parallel to and perpendicular to the direction of flow. In the dense limit, K is 
determined by the condition that its total collisional production vanish. When based 
on the anisotropic Maxwellian, this collisional production is independent of the spin 
of the mean motion. Consequently, the principal axes of K and D coincide and are 
oriented at  angles of 45" and 135" to the flow. Because of this, even though the 
principal values of K are different, the normal stresses on planes parallel and 
perpendicular to the flow are the same ; however they do differ on planes oriented, for 
example, a t  

Quantitative comparisons can be made with the results of two numerical 
simulations, one dilute and one dense. For e = 0.8 (e = 0.2) and v = 0.025, Walton & 
Braun (1987) find that P,,/Pyy = 1.484 and -Pzy/Pyu = 0.463. The corresponding 
values of these ratios based on the analytic approximations are 1.439 and 0.468, 
respectively. For e = 0.8 and v = 0.65, Walton & Braun find that -Pxu/Pyy = 0.357. 
In this case the analytic approximation gives a value of 0.397. Recent calculations 
by Richman (paper in preparation) indicate that the greater error (11.2%) in this 
dense limit is due to the neglect of higher-order terms involving transport and that 
it may be reduced substantially by including a t  least some of them. 

45" to the flow. 
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Appendix 
In  the dense limit, $ = 0, 

2R cos 28 
( i -acos2e )+ '  
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and, through x, 9 and 93 are functions of 6 and the parameters a and R. In this case 
the integrals can be written in the forms (75)-(79), with 

and 

y(a, R)  = ( 1  -a cos 26); 9 d6, r 
cos 26( 1 -a cos 2 6 ) : 9  do, (A 3 )  

sin226(1-a c o s 2 6 ) ~ F d 6 ,  (A 4 )  

J ( a ,  R) = 1: sin2 2693 d6, 

(1-a ~ 0 ~ 2 6 ) 9 d 6 ,  

In  these we expand the integrands in powers o f a  and R and integrate term by term. 
The resulting series are 

m 2n-P 
y = 3 d a R + 6 7 ~  C AnR2" C ___ A(i-n,2p)a2P, 

n=o p=o ( n+p) !  
(A 8) 

where 

and 

A ,  E 
n! (2n- 1 )  (2n-3) 

T(m+1) , A ( m , n )  = 
n! T(m+ 1 -n) ' 

3xa 2n-P +- C AnR2" C A(;-%, 2p) a2p; ( A  12) 
R n=o p=o (n+p+ I ) !  

m m 2n+l-p 
- x a R  C B, R2" C A(-$ -nn ,2p+l )a2P ,  ( A  13) 

n-0 p-0 ( n+p+2) !  

where B, = (A 14) n! (2%- 1 )  (2n+ 1 )  ' 

N = 1&(1 + 4 R 2 ) - 2 ~ a R  C B, RZn 2 A( t -n ,  2p+ 1 )  a2p; (A 15) 
n-0 p=o (n+p+ l ) !  



328 J .  T. Jenkins and M .  W .  Richman 

and 

In these we need only the terms that permit us to satisfy the energy equation (80) 
and the deviatoric second-moment equation (81) at, respectively, fourth order and 
second order in CL and R. The approximations are conveniently expressed in terms of 
a s CL f 2 d R  and f2 : 

= $1[4 + 3R2(8 + ~ R U  + xu2) + 3R4(4 - 37ta2 + &&L~)], (A 17) 

(A 18) H = - 3 4  1 +a + R2(2 + 3a- $w~)], 

I = ;7cfa[4+R2(12-;xa2)], (A 19) 

J = $ ~ ~ [ 1 + 2 R ~ ( l - u ) ] ,  (A 20) 

N = 7~![1 +4R2(1 + u ) - R ' u ( ~ - $ c u ) ] ,  (A 21) 

and R2S = x R 2 [ 4 + x a + R 2 ( 4 - ~ x a 2 ) ] .  (A 2 2 )  

The higher-order terms underlined in (A 21) are not involved in the determination of 
CL and R.  They are necessary for the approximation to the non-dimensional normal 
stress. 
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